PML NBs (ND10) and Daxx: from nuclear structure to protein function.
نویسندگان
چکیده
Proteins that combine PML NBs (ND10) can be divided into two groups: "transient" (that accumulate at PML NBs upon over-expression, interferon-induced up-regulation, block of proteosomal degradation, environmental stress or viral infection) and "constitutive" that co-localize with PML in the majority of cultured cells. One of the few "constitutive" components of PML NBs is the death domain-associated protein Daxx. While PML NBs are the most obvious depositories of Daxx, there are multiple alternative localization of this protein in the nucleus and cytoplasm, suggesting differential functionality of Daxx at different cellular compartments and stages of the cell cycle. The purpose of this review is to analyze Daxx spatiotemporal behavior within and outside of PML NBs and to discuss functions attributed to these localizations. We suggest that Daxx can participate in numerous cellular functions as a mediator of protein interactions, thus acting as a fine tuning instrument in highly orchestrated cellular processes; we also envision PML NBs accumulation of Daxx as an "out of action" storage depot.
منابع مشابه
Interplay between Herpesvirus Infection and Host Defense by PML Nuclear Bodies
In recent studies we and others have identified the cellular proteins PML, hDaxx, and Sp100, which form a subnuclear structure known as nuclear domain 10 (ND10) or PML nuclear bodies (PML-NBs), as host restriction factors that counteract herpesviral infections by inhibiting viral replication at different stages. The antiviral function of ND10, however, is antagonized by viral regulatory protein...
متن کاملTRIM19/PML Restricts HIV Infection in a Cell Type-Dependent Manner
The promyelocytic leukemia protein (PML) is the main structural component of the nuclear matrix structures termed nuclear domain 10 (ND10) or PML nuclear bodies (PML-NBs). PML and ND10 structures have been shown to mediate an intrinsic immune response against a variety of different viruses. Their role during retroviral replication, however, is still controversially discussed. In this study, we ...
متن کاملPml Is Critical for Nd10 Formation and Recruits the Pml-Interacting Protein Daxx to This Nuclear Structure When Modified by Sumo-1
Nuclear domain 10 (ND10), also referred to as nuclear bodies, are discrete interchromosomal accumulations of several proteins including promyelocytic leukemia protein (PML) and Sp100. In this study, we investigated the mechanism of ND10 assembly by identifying proteins that are essential for this process using cells lines that lack individual ND10-associated proteins. We identified the adapter ...
متن کاملPromyelocytic leukemia-nuclear body proteins: herpesvirus enemies, accomplices, or both?
The promyelocytic leukemia (PML) protein gathers other cellular proteins, such as Daxx and Sp100, to form subnuclear structures termed PML-nuclear bodies (PML-NBs) or ND10 domains. Many infecting viral genomes localize to PML-NBs, leading to speculation that these structures may represent the most efficient subnuclear location for viral replication. Conversely, many viral proteins modify or dis...
متن کاملHeat shock and Cd2+ exposure regulate PML and Daxx release from ND10 by independent mechanisms that modify the induction of heat-shock proteins 70 and 25 differently.
Nuclear domains called ND10 or PML bodies might function as nuclear depots by recruiting or releasing certain proteins. Although recruitment of proteins through interferon-induced upregulation and SUMO-1 modification level of PML had been defined, it is not known whether release of proteins is regulated and has physiological consequences. Exposure to sublethal environmental stress revealed a se...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Frontiers in bioscience : a journal and virtual library
دوره 13 شماره
صفحات -
تاریخ انتشار 2008